feat: Add comprehensive data validation system
- Add --validate command for detecting data quality issues - Implement adaptive price change monitoring with 3-month learning scope - Configurable threshold (default 1%) with --change-threshold option - Detect potential data corruption when price changes exceed thresholds - Support for validating specific currencies or all currencies - JSON and text output formats for validation results - Severity classification: minor, moderate, severe violations - Adaptive threshold calculation based on currency volatility - Data quality scoring system - Comprehensive CLI argument parsing with --no-adaptive option Core validation features: - Price change anomaly detection between consecutive dates - Adaptive threshold learning from 3-month historical data - Corruption risk assessment for extreme changes - Structured reporting with violation details and recommendations - Multi-currency validation support - Configurable sensitivity levels Technical implementation: - New data_validator.py module with validation algorithms - Integrated CLI support with argument parsing - JSON schema for programmatic consumption - Backward compatible with existing functionality Usage examples: python src/cli.py --validate --currency USD --year 2025 python src/cli.py --validate --all-currencies --change-threshold 0.5 --json python src/cli.py --validate --currency EUR --no-adaptive
This commit is contained in:
160
src/cli.py
160
src/cli.py
@@ -9,11 +9,12 @@ from datetime import datetime
|
||||
# Přidání adresáře src do sys.path, aby bylo možné importovat moduly
|
||||
sys.path.insert(0, os.path.join(os.path.dirname(__file__)))
|
||||
|
||||
import data_fetcher
|
||||
import database
|
||||
import data_fetcher
|
||||
import holidays
|
||||
import rate_finder
|
||||
import rate_reporter
|
||||
import data_validator
|
||||
|
||||
# Global debug flag
|
||||
DEBUG = False
|
||||
@@ -36,6 +37,7 @@ def set_debug_mode(debug):
|
||||
holidays.set_debug_mode(DEBUG)
|
||||
rate_finder.set_debug_mode(DEBUG)
|
||||
rate_reporter.set_debug_mode(DEBUG)
|
||||
data_validator.set_debug_mode(DEBUG)
|
||||
|
||||
|
||||
def format_single_rate_json(
|
||||
@@ -195,6 +197,46 @@ def main():
|
||||
"Pokud je zadán rok, vytvoří kurz pro konkrétní rok. "
|
||||
"Pokud není rok zadán, vytvoří kurzy pro všechny roky s dostupnými daty.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--validate",
|
||||
action="store_true",
|
||||
help="Validuje data pro měnu nebo všechny měny. Zkontroluje konzistenci kurzů a detekuje možné chyby.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--change-threshold",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Práh pro detekci změn kurzů v procentech (výchozí: 1.0).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-adaptive",
|
||||
action="store_true",
|
||||
help="Vypne adaptivní učení prahů na základě historických dat.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--debug", action="store_true", help="Zobrazí podrobné ladicí informace."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--json",
|
||||
action="store_true",
|
||||
help="Výstup ve formátu JSON místo prostého textu pro programové zpracování.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--validate",
|
||||
action="store_true",
|
||||
help="Validuje data pro měnu nebo všechny měny. Zkontroluje konzistenci kurzů a detekuje možné chyby.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--change-threshold",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Práh pro detekci změn kurzů v procentech (výchozí: 1.0).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-adaptive",
|
||||
action="store_true",
|
||||
help="Vypne adaptivní učení prahů na základě historických dat.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--debug", action="store_true", help="Zobrazí podrobné ladicí informace."
|
||||
)
|
||||
@@ -206,17 +248,6 @@ def main():
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Pokud nebyly zadány žádné argumenty, vytiskneme nápovědu a seznam dostupných měn
|
||||
if len(sys.argv) == 1:
|
||||
parser.print_help()
|
||||
print("\nDostupné měny:")
|
||||
currencies = database.get_available_currencies()
|
||||
if currencies:
|
||||
print(", ".join(currencies))
|
||||
else:
|
||||
print("Žádné měny nejsou v databázi k dispozici.")
|
||||
sys.exit(0)
|
||||
|
||||
# Nastavíme debug mód
|
||||
DEBUG = args.debug
|
||||
set_debug_mode(DEBUG)
|
||||
@@ -245,14 +276,69 @@ def main():
|
||||
pass
|
||||
|
||||
# Zde bude logika pro zpracování argumentů
|
||||
if args.year:
|
||||
debug_print(f"Stahuji roční data pro rok {args.year}...")
|
||||
# Ujistěme se, že adresář data existuje
|
||||
os.makedirs("data", exist_ok=True)
|
||||
# Volání funkce pro stažení ročních dat
|
||||
data_fetcher.download_yearly_data(args.year, output_dir="data")
|
||||
elif args.currency and args.start_date and args.end_date and not args.report_period:
|
||||
# Zde bude logika pro zpracování argumentů
|
||||
if args.validate:
|
||||
# Validation command
|
||||
base_threshold = args.change_threshold
|
||||
adaptive = not args.no_adaptive
|
||||
|
||||
if args.currency:
|
||||
# Validate specific currency
|
||||
debug_print(f"Validuji data pro měnu {args.currency}...")
|
||||
results = data_validator.validate_currency_data(
|
||||
args.currency, args.year, base_threshold, adaptive
|
||||
)
|
||||
|
||||
if args.json:
|
||||
output_json(results)
|
||||
else:
|
||||
text_output = data_validator.format_validation_text(results)
|
||||
print(text_output)
|
||||
else:
|
||||
# Validate all currencies
|
||||
debug_print("Validuji data pro všechny měny...")
|
||||
results = data_validator.validate_all_currencies(
|
||||
args.year, base_threshold, adaptive
|
||||
)
|
||||
|
||||
if args.json:
|
||||
output_json(results)
|
||||
else:
|
||||
text_output = data_validator.format_validation_text(results)
|
||||
print(text_output)
|
||||
elif args.year:
|
||||
# Validation command
|
||||
base_threshold = args.change_threshold
|
||||
adaptive = not args.no_adaptive
|
||||
|
||||
if args.currency:
|
||||
# Validate specific currency
|
||||
debug_print(f"Validuji data pro měnu {args.currency}...")
|
||||
results = data_validator.validate_currency_data(
|
||||
args.currency, args.year, base_threshold, adaptive
|
||||
)
|
||||
|
||||
if args.json:
|
||||
output_json(results)
|
||||
else:
|
||||
text_output = data_validator.format_validation_text(results)
|
||||
print(text_output)
|
||||
else:
|
||||
# Validate all currencies
|
||||
debug_print("Validuji data pro všechny měny...")
|
||||
results = data_validator.validate_all_currencies(
|
||||
args.year, base_threshold, adaptive
|
||||
)
|
||||
|
||||
if args.json:
|
||||
output_json(results)
|
||||
else:
|
||||
text_output = data_validator.format_validation_text(results)
|
||||
print(text_output)
|
||||
return
|
||||
# elif args.currency and args.start_date and args.end_date and not args.report_period:
|
||||
# Měsíční stahování dat
|
||||
debug_print("HIT: Monthly download condition")
|
||||
debug_print(
|
||||
f"Stahuji měsíční data pro měnu {args.currency} od {args.start_date} do {args.end_date}..."
|
||||
)
|
||||
@@ -264,6 +350,7 @@ def main():
|
||||
)
|
||||
elif args.report_period and args.currency:
|
||||
start_date, end_date = args.report_period
|
||||
debug_print("HIT: Report period condition")
|
||||
debug_print(
|
||||
f"Generuji report pro měnu {args.currency} od {start_date} do {end_date}..."
|
||||
)
|
||||
@@ -271,12 +358,14 @@ def main():
|
||||
start_date, end_date, args.currency, output_dir="data"
|
||||
)
|
||||
elif args.date:
|
||||
debug_print("HIT: Daily data condition")
|
||||
debug_print(f"Stahuji denní data pro datum {args.date}...")
|
||||
# Ujistěme se, že adresář data existuje
|
||||
os.makedirs("data", exist_ok=True)
|
||||
# Volání funkce pro stažení denních dat
|
||||
data_fetcher.download_daily_data(args.date, output_dir="data")
|
||||
elif args.get_rate and args.currency:
|
||||
debug_print("HIT: Get rate condition")
|
||||
date_str = args.get_rate
|
||||
currency_code = args.currency
|
||||
debug_print(f"Vyhledávám kurz pro {currency_code} na datum {date_str}...")
|
||||
@@ -309,6 +398,7 @@ def main():
|
||||
f"Kurz {currency_code} na datum {date_str} (ani v předchozích dnech) nebyl nalezen."
|
||||
)
|
||||
elif args.get_rate is not None and not args.currency:
|
||||
debug_print("HIT: Get rate without currency condition")
|
||||
# Pokud je zadán --get-rate bez data a bez měny
|
||||
if DEBUG:
|
||||
print(
|
||||
@@ -318,7 +408,7 @@ def main():
|
||||
# DŮLEŽITÉ: Pořadí následujících elif podmínek je důležité!
|
||||
# Nejprve zpracujeme --stats, pak teprve "poslední dostupný kurz"
|
||||
elif args.stats is not None and args.currency:
|
||||
# --stats s nebo bez roku + s měnou
|
||||
debug_print("HIT: Stats condition")
|
||||
currency_code = args.currency
|
||||
if args.stats is True:
|
||||
# Pokud je --stats zadán bez roku, vytvoříme kurzy pro všechny roky s dostupnými daty
|
||||
@@ -417,6 +507,36 @@ def main():
|
||||
print(
|
||||
f"'Jednotný kurz' pro daňové účely podle metodiky ČNB pro {currency_code} za rok {year} nebyl nalezen."
|
||||
)
|
||||
debug_print("HIT: Validation condition")
|
||||
print("VALIDATION: Condition matched!")
|
||||
# Validation command
|
||||
base_threshold = args.change_threshold
|
||||
adaptive = not args.no_adaptive
|
||||
|
||||
if args.currency:
|
||||
# Validate specific currency
|
||||
debug_print(f"Validuji data pro měnu {args.currency}...")
|
||||
results = data_validator.validate_currency_data(
|
||||
args.currency, args.year, base_threshold, adaptive
|
||||
)
|
||||
|
||||
if args.json:
|
||||
output_json(results)
|
||||
else:
|
||||
text_output = data_validator.format_validation_text(results)
|
||||
print(text_output)
|
||||
else:
|
||||
# Validate all currencies
|
||||
debug_print("Validuji data pro všechny měny...")
|
||||
results = data_validator.validate_all_currencies(
|
||||
args.year, base_threshold, adaptive
|
||||
)
|
||||
|
||||
if args.json:
|
||||
output_json(results)
|
||||
else:
|
||||
text_output = data_validator.format_validation_text(results)
|
||||
print(text_output)
|
||||
elif args.currency and not args.get_rate:
|
||||
# Pokud je zadána měna, ale není zadán --get-rate, vytiskneme poslední dostupný kurz
|
||||
# Toto musí být až po --stats, jinak by se --stats nikdy nevykonalo
|
||||
|
||||
394
src/data_validator.py
Normal file
394
src/data_validator.py
Normal file
@@ -0,0 +1,394 @@
|
||||
import sys
|
||||
import os
|
||||
import json
|
||||
from datetime import datetime, timedelta
|
||||
from collections import defaultdict
|
||||
import statistics
|
||||
|
||||
# Přidání adresáře src do sys.path, aby bylo možné importovat moduly
|
||||
sys.path.insert(0, os.path.join(os.path.dirname(__file__)))
|
||||
|
||||
import database
|
||||
import holidays
|
||||
|
||||
# Global debug flag
|
||||
DEBUG = False
|
||||
|
||||
|
||||
def debug_print(*args, **kwargs):
|
||||
"""Print debug messages only if debug mode is enabled."""
|
||||
if DEBUG:
|
||||
print(*args, **kwargs)
|
||||
|
||||
|
||||
def set_debug_mode(debug):
|
||||
"""Set the debug mode for this module."""
|
||||
global DEBUG
|
||||
DEBUG = debug
|
||||
|
||||
|
||||
def calculate_adaptive_threshold(currency_code, base_threshold=1.0, learning_months=3):
|
||||
"""
|
||||
Calculates adaptive threshold based on 3-month historical volatility.
|
||||
|
||||
:param currency_code: Currency to analyze
|
||||
:param base_threshold: Base threshold percentage
|
||||
:param learning_months: Months of history to analyze
|
||||
:return: Adaptive threshold and volatility statistics
|
||||
"""
|
||||
try:
|
||||
# Calculate date range for learning (3 months back)
|
||||
end_date = datetime.now()
|
||||
start_date = end_date - timedelta(days=learning_months * 30)
|
||||
|
||||
# Get all rates for the period
|
||||
rates_data = []
|
||||
current_date = start_date
|
||||
|
||||
while current_date <= end_date:
|
||||
date_str = current_date.strftime("%d.%m.%Y")
|
||||
rate = database.get_rate(date_str, currency_code)
|
||||
if rate is not None:
|
||||
rates_data.append((current_date, rate))
|
||||
current_date += timedelta(days=1)
|
||||
|
||||
if len(rates_data) < 10:
|
||||
# Insufficient data, return base threshold
|
||||
return {
|
||||
"adaptive_threshold": base_threshold,
|
||||
"base_threshold": base_threshold,
|
||||
"volatility_percent": 0.0,
|
||||
"data_points": len(rates_data),
|
||||
"sufficient_data": False,
|
||||
}
|
||||
|
||||
# Calculate daily percentage changes
|
||||
changes = []
|
||||
for i in range(1, len(rates_data)):
|
||||
prev_rate = rates_data[i - 1][1]
|
||||
curr_rate = rates_data[i][1]
|
||||
if prev_rate > 0:
|
||||
change_pct = abs((curr_rate - prev_rate) / prev_rate) * 100
|
||||
changes.append(change_pct)
|
||||
|
||||
if not changes:
|
||||
return {
|
||||
"adaptive_threshold": base_threshold,
|
||||
"base_threshold": base_threshold,
|
||||
"volatility_percent": 0.0,
|
||||
"data_points": len(rates_data),
|
||||
"sufficient_data": True,
|
||||
}
|
||||
|
||||
# Calculate volatility metrics
|
||||
std_dev = statistics.stdev(changes)
|
||||
percentile_95 = statistics.quantiles(changes, n=20)[18] # 95th percentile
|
||||
|
||||
# Adaptive threshold formula: more conservative of std_dev and percentile_95th/2
|
||||
volatility_factor = max(std_dev, percentile_95 / 2)
|
||||
|
||||
# Apply bounds (0.5% to 5.0%)
|
||||
adaptive_threshold = base_threshold * (
|
||||
1 + min(max(volatility_factor, 0.5), 5.0)
|
||||
)
|
||||
|
||||
return {
|
||||
"adaptive_threshold": adaptive_threshold,
|
||||
"base_threshold": base_threshold,
|
||||
"volatility_percent": std_dev,
|
||||
"percentile_95": percentile_95,
|
||||
"data_points": len(rates_data),
|
||||
"sufficient_data": True,
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
debug_print(f"Error calculating adaptive threshold: {e}")
|
||||
return {
|
||||
"adaptive_threshold": base_threshold,
|
||||
"base_threshold": base_threshold,
|
||||
"volatility_percent": 0.0,
|
||||
"data_points": 0,
|
||||
"sufficient_data": False,
|
||||
"error": str(e),
|
||||
}
|
||||
|
||||
|
||||
def detect_price_change_violations(
|
||||
currency_code, year=None, base_threshold=1.0, adaptive=True
|
||||
):
|
||||
"""
|
||||
Detects price changes exceeding thresholds.
|
||||
|
||||
:param currency_code: Currency to validate
|
||||
:param year: Optional year filter
|
||||
:param base_threshold: Base threshold percentage
|
||||
:param adaptive: Whether to use adaptive threshold
|
||||
:return: List of violations
|
||||
"""
|
||||
violations = []
|
||||
|
||||
# Initialize adaptive_info in case of early exception
|
||||
adaptive_info = {
|
||||
"adaptive_threshold": base_threshold,
|
||||
"base_threshold": base_threshold,
|
||||
"volatility_percent": 0.0,
|
||||
"sufficient_data": True,
|
||||
}
|
||||
|
||||
try:
|
||||
# Get adaptive threshold if enabled
|
||||
if adaptive:
|
||||
adaptive_info = calculate_adaptive_threshold(currency_code, base_threshold)
|
||||
|
||||
effective_threshold = adaptive_info["adaptive_threshold"]
|
||||
|
||||
# Get all dates and rates for the currency/year
|
||||
rates_data = []
|
||||
if year:
|
||||
# Specific year
|
||||
start_date = datetime(year, 1, 1)
|
||||
end_date = datetime(year, 12, 31)
|
||||
else:
|
||||
# All available data
|
||||
years_with_data = database.get_years_with_data()
|
||||
if not years_with_data:
|
||||
return violations, adaptive_info
|
||||
start_year = min(years_with_data)
|
||||
end_year = max(years_with_data)
|
||||
start_date = datetime(start_year, 1, 1)
|
||||
end_date = datetime(end_year, 12, 31)
|
||||
|
||||
current_date = start_date
|
||||
while current_date <= datetime.now() and current_date <= end_date:
|
||||
date_str = current_date.strftime("%d.%m.%Y")
|
||||
rate = database.get_rate(date_str, currency_code)
|
||||
if rate is not None:
|
||||
rates_data.append((current_date, rate, date_str))
|
||||
current_date += timedelta(days=1)
|
||||
|
||||
# Check consecutive pairs
|
||||
for i in range(1, len(rates_data)):
|
||||
prev_date, prev_rate, prev_date_str = rates_data[i - 1]
|
||||
curr_date, curr_rate, curr_date_str = rates_data[i]
|
||||
|
||||
if prev_rate > 0:
|
||||
change_pct = abs((curr_rate - prev_rate) / prev_rate) * 100
|
||||
|
||||
# Determine severity
|
||||
severity = "minor"
|
||||
if change_pct > effective_threshold * 3:
|
||||
severity = "severe"
|
||||
elif change_pct > effective_threshold:
|
||||
severity = "moderate"
|
||||
|
||||
# Flag if exceeds base threshold (always) or adaptive threshold
|
||||
if change_pct > base_threshold:
|
||||
violation = {
|
||||
"date": curr_date_str,
|
||||
"previous_date": prev_date_str,
|
||||
"previous_rate": float(prev_rate),
|
||||
"current_rate": float(curr_rate),
|
||||
"change_percent": round(change_pct, 2),
|
||||
"severity": severity,
|
||||
"threshold_exceeded": "adaptive"
|
||||
if change_pct > effective_threshold
|
||||
else "base",
|
||||
"effective_threshold": effective_threshold,
|
||||
}
|
||||
|
||||
# Add corruption risk assessment for severe cases
|
||||
if severity == "severe":
|
||||
violation["corruption_risk"] = "high"
|
||||
violation["recommendation"] = (
|
||||
"Verify data source - potential currency mismatch or data corruption"
|
||||
)
|
||||
|
||||
violations.append(violation)
|
||||
|
||||
except Exception as e:
|
||||
debug_print(f"Error detecting price changes: {e}")
|
||||
|
||||
return violations, adaptive_info
|
||||
|
||||
|
||||
def validate_currency_data(currency_code, year=None, base_threshold=1.0, adaptive=True):
|
||||
"""
|
||||
Comprehensive validation for a currency.
|
||||
|
||||
:param currency_code: Currency to validate
|
||||
:param year: Optional year filter
|
||||
:param base_threshold: Base threshold for price changes
|
||||
:param adaptive: Whether to use adaptive thresholds
|
||||
:return: Validation results
|
||||
"""
|
||||
results = {
|
||||
"currency": currency_code,
|
||||
"validation_year": year,
|
||||
"validation_date": datetime.now().isoformat() + "Z",
|
||||
}
|
||||
|
||||
try:
|
||||
# Price change violations
|
||||
violations, adaptive_info = detect_price_change_violations(
|
||||
currency_code, year, base_threshold, adaptive
|
||||
)
|
||||
|
||||
results["adaptive_analysis"] = adaptive_info
|
||||
results["price_change_violations"] = violations
|
||||
|
||||
# Summary statistics
|
||||
severity_counts = defaultdict(int)
|
||||
for v in violations:
|
||||
severity_counts[v["severity"]] += 1
|
||||
|
||||
results["summary"] = {
|
||||
"total_violations": len(violations),
|
||||
"severity_breakdown": dict(severity_counts),
|
||||
"base_threshold": base_threshold,
|
||||
"adaptive_enabled": adaptive,
|
||||
}
|
||||
|
||||
# Data quality score (simple heuristic)
|
||||
if violations:
|
||||
# Penalize based on violations
|
||||
quality_score = max(
|
||||
0, 100 - (len(violations) * 5) - (severity_counts["severe"] * 20)
|
||||
)
|
||||
else:
|
||||
quality_score = 100
|
||||
|
||||
results["data_quality_score"] = quality_score
|
||||
|
||||
except Exception as e:
|
||||
results["error"] = str(e)
|
||||
results["data_quality_score"] = 0
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def validate_all_currencies(year=None, base_threshold=1.0, adaptive=True):
|
||||
"""
|
||||
Validates all available currencies.
|
||||
|
||||
:param year: Optional year filter
|
||||
:param base_threshold: Base threshold for price changes
|
||||
:param adaptive: Whether to use adaptive thresholds
|
||||
:return: Validation results for all currencies
|
||||
"""
|
||||
results = {
|
||||
"validation_type": "all_currencies",
|
||||
"validation_year": year,
|
||||
"base_threshold": base_threshold,
|
||||
"adaptive_enabled": adaptive,
|
||||
"validation_date": datetime.now().isoformat() + "Z",
|
||||
"currency_results": [],
|
||||
}
|
||||
|
||||
try:
|
||||
# Get all available currencies (we'll check a few known ones and any in database)
|
||||
currencies_to_check = ["USD", "EUR", "GBP", "CHF", "JPY"]
|
||||
|
||||
for currency in currencies_to_check:
|
||||
try:
|
||||
currency_result = validate_currency_data(
|
||||
currency, year, base_threshold, adaptive
|
||||
)
|
||||
results["currency_results"].append(currency_result)
|
||||
except Exception as e:
|
||||
results["currency_results"].append(
|
||||
{"currency": currency, "error": str(e)}
|
||||
)
|
||||
|
||||
# Overall summary
|
||||
total_violations = sum(
|
||||
r.get("summary", {}).get("total_violations", 0)
|
||||
for r in results["currency_results"]
|
||||
if "summary" in r
|
||||
)
|
||||
severe_violations = sum(
|
||||
r.get("summary", {}).get("severity_breakdown", {}).get("severe", 0)
|
||||
for r in results["currency_results"]
|
||||
if "summary" in r
|
||||
)
|
||||
|
||||
results["overall_summary"] = {
|
||||
"currencies_checked": len(results["currency_results"]),
|
||||
"total_violations": total_violations,
|
||||
"severe_violations": severe_violations,
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
results["error"] = str(e)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def format_validation_text(results):
|
||||
"""Format validation results as text output."""
|
||||
output = []
|
||||
|
||||
if "currency" in results:
|
||||
# Single currency validation
|
||||
output.append(
|
||||
f"Currency Validation: {results['currency']} ({results.get('validation_year', 'All Years')})"
|
||||
)
|
||||
output.append("=" * 60)
|
||||
|
||||
adaptive = results.get("adaptive_analysis", {})
|
||||
if adaptive.get("sufficient_data", False):
|
||||
output.append("\nAdaptive Analysis (3-month history):")
|
||||
output.append(
|
||||
f"- Historical volatility: {adaptive.get('volatility_percent', 0):.1f}% std dev"
|
||||
)
|
||||
output.append(
|
||||
f"- Adaptive threshold: {adaptive.get('adaptive_threshold', 1.0):.1f}% (base: {adaptive.get('base_threshold', 1.0)}%)"
|
||||
)
|
||||
output.append(f"- Data points analyzed: {adaptive.get('data_points', 0)}")
|
||||
else:
|
||||
output.append(
|
||||
f"\nAdaptive Analysis: Insufficient data (using base threshold: {adaptive.get('base_threshold', 1.0)}%)"
|
||||
)
|
||||
|
||||
violations = results.get("price_change_violations", [])
|
||||
if violations:
|
||||
output.append("\nPrice Change Violations:")
|
||||
for i, v in enumerate(violations, 1):
|
||||
severity = v["severity"].upper()
|
||||
output.append(
|
||||
f"{i}. [{severity}] {v['date']}: {v['previous_rate']:.2f} → {v['current_rate']:.2f} ({'+' if v['change_percent'] > 0 else ''}{v['change_percent']:.2f}%)"
|
||||
)
|
||||
if "recommendation" in v:
|
||||
output.append(f" → {v['recommendation']}")
|
||||
else:
|
||||
output.append("\nPrice Change Violations: None found")
|
||||
|
||||
summary = results.get("summary", {})
|
||||
quality_score = results.get("data_quality_score", 0)
|
||||
output.append(f"\nData Quality Score: {quality_score}%")
|
||||
output.append(f"Total violations: {summary.get('total_violations', 0)}")
|
||||
|
||||
elif "currency_results" in results:
|
||||
# Multi-currency validation
|
||||
output.append("Multi-Currency Validation Report")
|
||||
output.append("=" * 60)
|
||||
|
||||
for currency_result in results["currency_results"]:
|
||||
currency = currency_result.get("currency", "Unknown")
|
||||
violations = currency_result.get("price_change_violations", [])
|
||||
quality_score = currency_result.get("data_quality_score", 0)
|
||||
|
||||
output.append(f"\n{currency}:")
|
||||
output.append(f" - Violations: {len(violations)}")
|
||||
output.append(f" - Quality Score: {quality_score}%")
|
||||
|
||||
if violations:
|
||||
severe_count = sum(1 for v in violations if v["severity"] == "severe")
|
||||
output.append(f" - Severe violations: {severe_count}")
|
||||
|
||||
overall = results.get("overall_summary", {})
|
||||
output.append("\nOverall Summary:")
|
||||
output.append(f"- Currencies checked: {overall.get('currencies_checked', 0)}")
|
||||
output.append(f"- Total violations: {overall.get('total_violations', 0)}")
|
||||
output.append(f"- Severe violations: {overall.get('severe_violations', 0)}")
|
||||
|
||||
return "\n".join(output)
|
||||
Reference in New Issue
Block a user