Initial commit
This commit is contained in:
@@ -0,0 +1,426 @@
|
||||
# SPDX-License-Identifier: MIT
|
||||
# Copyright (C) 2022 Max Bachmann
|
||||
from __future__ import annotations
|
||||
|
||||
from rapidfuzz._common_py import common_affix, conv_sequences
|
||||
from rapidfuzz._utils import is_none, setupPandas
|
||||
from rapidfuzz.distance._initialize_py import Editop, Editops
|
||||
|
||||
|
||||
def similarity(
|
||||
s1,
|
||||
s2,
|
||||
*,
|
||||
processor=None,
|
||||
score_cutoff=None,
|
||||
):
|
||||
"""
|
||||
Calculates the length of the longest common subsequence
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s1 : Sequence[Hashable]
|
||||
First string to compare.
|
||||
s2 : Sequence[Hashable]
|
||||
Second string to compare.
|
||||
processor: callable, optional
|
||||
Optional callable that is used to preprocess the strings before
|
||||
comparing them. Default is None, which deactivates this behaviour.
|
||||
score_cutoff : int, optional
|
||||
Maximum distance between s1 and s2, that is
|
||||
considered as a result. If the similarity is smaller than score_cutoff,
|
||||
0 is returned instead. Default is None, which deactivates
|
||||
this behaviour.
|
||||
|
||||
Returns
|
||||
-------
|
||||
similarity : int
|
||||
similarity between s1 and s2
|
||||
"""
|
||||
if processor is not None:
|
||||
s1 = processor(s1)
|
||||
s2 = processor(s2)
|
||||
|
||||
if not s1:
|
||||
return 0
|
||||
|
||||
s1, s2 = conv_sequences(s1, s2)
|
||||
S = (1 << len(s1)) - 1
|
||||
block = {}
|
||||
block_get = block.get
|
||||
x = 1
|
||||
for ch1 in s1:
|
||||
block[ch1] = block_get(ch1, 0) | x
|
||||
x <<= 1
|
||||
|
||||
for ch2 in s2:
|
||||
Matches = block_get(ch2, 0)
|
||||
u = S & Matches
|
||||
S = (S + u) | (S - u)
|
||||
|
||||
# calculate the equivalent of popcount(~S) in C. This breaks for len(s1) == 0
|
||||
res = bin(S)[-len(s1) :].count("0")
|
||||
return res if (score_cutoff is None or res >= score_cutoff) else 0
|
||||
|
||||
|
||||
def _block_similarity(
|
||||
block,
|
||||
s1,
|
||||
s2,
|
||||
score_cutoff=None,
|
||||
):
|
||||
if not s1:
|
||||
return 0
|
||||
|
||||
S = (1 << len(s1)) - 1
|
||||
block_get = block.get
|
||||
|
||||
for ch2 in s2:
|
||||
Matches = block_get(ch2, 0)
|
||||
u = S & Matches
|
||||
S = (S + u) | (S - u)
|
||||
|
||||
# calculate the equivalent of popcount(~S) in C. This breaks for len(s1) == 0
|
||||
res = bin(S)[-len(s1) :].count("0")
|
||||
return res if (score_cutoff is None or res >= score_cutoff) else 0
|
||||
|
||||
|
||||
def distance(
|
||||
s1,
|
||||
s2,
|
||||
*,
|
||||
processor=None,
|
||||
score_cutoff=None,
|
||||
):
|
||||
"""
|
||||
Calculates the LCS distance in the range [0, max].
|
||||
|
||||
This is calculated as ``max(len1, len2) - similarity``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s1 : Sequence[Hashable]
|
||||
First string to compare.
|
||||
s2 : Sequence[Hashable]
|
||||
Second string to compare.
|
||||
processor: callable, optional
|
||||
Optional callable that is used to preprocess the strings before
|
||||
comparing them. Default is None, which deactivates this behaviour.
|
||||
score_cutoff : int, optional
|
||||
Maximum distance between s1 and s2, that is
|
||||
considered as a result. If the distance is bigger than score_cutoff,
|
||||
score_cutoff + 1 is returned instead. Default is None, which deactivates
|
||||
this behaviour.
|
||||
|
||||
Returns
|
||||
-------
|
||||
distance : int
|
||||
distance between s1 and s2
|
||||
|
||||
Examples
|
||||
--------
|
||||
Find the LCS distance between two strings:
|
||||
|
||||
>>> from rapidfuzz.distance import LCSseq
|
||||
>>> LCSseq.distance("lewenstein", "levenshtein")
|
||||
2
|
||||
|
||||
Setting a maximum distance allows the implementation to select
|
||||
a more efficient implementation:
|
||||
|
||||
>>> LCSseq.distance("lewenstein", "levenshtein", score_cutoff=1)
|
||||
2
|
||||
|
||||
"""
|
||||
if processor is not None:
|
||||
s1 = processor(s1)
|
||||
s2 = processor(s2)
|
||||
|
||||
s1, s2 = conv_sequences(s1, s2)
|
||||
maximum = max(len(s1), len(s2))
|
||||
sim = similarity(s1, s2)
|
||||
dist = maximum - sim
|
||||
return dist if (score_cutoff is None or dist <= score_cutoff) else score_cutoff + 1
|
||||
|
||||
|
||||
def normalized_distance(
|
||||
s1,
|
||||
s2,
|
||||
*,
|
||||
processor=None,
|
||||
score_cutoff=None,
|
||||
):
|
||||
"""
|
||||
Calculates a normalized LCS similarity in the range [1, 0].
|
||||
|
||||
This is calculated as ``distance / max(len1, len2)``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s1 : Sequence[Hashable]
|
||||
First string to compare.
|
||||
s2 : Sequence[Hashable]
|
||||
Second string to compare.
|
||||
processor: callable, optional
|
||||
Optional callable that is used to preprocess the strings before
|
||||
comparing them. Default is None, which deactivates this behaviour.
|
||||
score_cutoff : float, optional
|
||||
Optional argument for a score threshold as a float between 0 and 1.0.
|
||||
For norm_dist > score_cutoff 1.0 is returned instead. Default is 1.0,
|
||||
which deactivates this behaviour.
|
||||
|
||||
Returns
|
||||
-------
|
||||
norm_dist : float
|
||||
normalized distance between s1 and s2 as a float between 0 and 1.0
|
||||
"""
|
||||
setupPandas()
|
||||
if is_none(s1) or is_none(s2):
|
||||
return 1.0
|
||||
|
||||
if processor is not None:
|
||||
s1 = processor(s1)
|
||||
s2 = processor(s2)
|
||||
|
||||
if not s1 or not s2:
|
||||
return 0
|
||||
|
||||
s1, s2 = conv_sequences(s1, s2)
|
||||
maximum = max(len(s1), len(s2))
|
||||
norm_sim = distance(s1, s2) / maximum
|
||||
return norm_sim if (score_cutoff is None or norm_sim <= score_cutoff) else 1
|
||||
|
||||
|
||||
def normalized_similarity(
|
||||
s1,
|
||||
s2,
|
||||
*,
|
||||
processor=None,
|
||||
score_cutoff=None,
|
||||
):
|
||||
"""
|
||||
Calculates a normalized LCS similarity in the range [0, 1].
|
||||
|
||||
This is calculated as ``1 - normalized_distance``
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s1 : Sequence[Hashable]
|
||||
First string to compare.
|
||||
s2 : Sequence[Hashable]
|
||||
Second string to compare.
|
||||
processor: callable, optional
|
||||
Optional callable that is used to preprocess the strings before
|
||||
comparing them. Default is None, which deactivates this behaviour.
|
||||
score_cutoff : float, optional
|
||||
Optional argument for a score threshold as a float between 0 and 1.0.
|
||||
For norm_sim < score_cutoff 0 is returned instead. Default is 0,
|
||||
which deactivates this behaviour.
|
||||
|
||||
Returns
|
||||
-------
|
||||
norm_sim : float
|
||||
normalized similarity between s1 and s2 as a float between 0 and 1.0
|
||||
|
||||
Examples
|
||||
--------
|
||||
Find the normalized LCS similarity between two strings:
|
||||
|
||||
>>> from rapidfuzz.distance import LCSseq
|
||||
>>> LCSseq.normalized_similarity("lewenstein", "levenshtein")
|
||||
0.8181818181818181
|
||||
|
||||
Setting a score_cutoff allows the implementation to select
|
||||
a more efficient implementation:
|
||||
|
||||
>>> LCSseq.normalized_similarity("lewenstein", "levenshtein", score_cutoff=0.9)
|
||||
0.0
|
||||
|
||||
When a different processor is used s1 and s2 do not have to be strings
|
||||
|
||||
>>> LCSseq.normalized_similarity(["lewenstein"], ["levenshtein"], processor=lambda s: s[0])
|
||||
0.81818181818181
|
||||
"""
|
||||
setupPandas()
|
||||
if is_none(s1) or is_none(s2):
|
||||
return 0.0
|
||||
|
||||
if processor is not None:
|
||||
s1 = processor(s1)
|
||||
s2 = processor(s2)
|
||||
|
||||
norm_sim = 1.0 - normalized_distance(s1, s2)
|
||||
return norm_sim if (score_cutoff is None or norm_sim >= score_cutoff) else 0
|
||||
|
||||
|
||||
def _matrix(s1, s2):
|
||||
if not s1:
|
||||
return (0, [])
|
||||
|
||||
S = (1 << len(s1)) - 1
|
||||
block = {}
|
||||
block_get = block.get
|
||||
x = 1
|
||||
for ch1 in s1:
|
||||
block[ch1] = block_get(ch1, 0) | x
|
||||
x <<= 1
|
||||
|
||||
matrix = []
|
||||
for ch2 in s2:
|
||||
Matches = block_get(ch2, 0)
|
||||
u = S & Matches
|
||||
S = (S + u) | (S - u)
|
||||
matrix.append(S)
|
||||
|
||||
# calculate the equivalent of popcount(~S) in C. This breaks for len(s1) == 0
|
||||
sim = bin(S)[-len(s1) :].count("0")
|
||||
return (sim, matrix)
|
||||
|
||||
|
||||
def editops(
|
||||
s1,
|
||||
s2,
|
||||
*,
|
||||
processor=None,
|
||||
):
|
||||
"""
|
||||
Return Editops describing how to turn s1 into s2.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s1 : Sequence[Hashable]
|
||||
First string to compare.
|
||||
s2 : Sequence[Hashable]
|
||||
Second string to compare.
|
||||
processor: callable, optional
|
||||
Optional callable that is used to preprocess the strings before
|
||||
comparing them. Default is None, which deactivates this behaviour.
|
||||
|
||||
Returns
|
||||
-------
|
||||
editops : Editops
|
||||
edit operations required to turn s1 into s2
|
||||
|
||||
Notes
|
||||
-----
|
||||
The alignment is calculated using an algorithm of Heikki Hyyrö, which is
|
||||
described in [6]_. It has a time complexity and memory usage of ``O([N/64] * M)``.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [6] Hyyrö, Heikki. "A Note on Bit-Parallel Alignment Computation."
|
||||
Stringology (2004).
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from rapidfuzz.distance import LCSseq
|
||||
>>> for tag, src_pos, dest_pos in LCSseq.editops("qabxcd", "abycdf"):
|
||||
... print(("%7s s1[%d] s2[%d]" % (tag, src_pos, dest_pos)))
|
||||
delete s1[0] s2[0]
|
||||
delete s1[3] s2[2]
|
||||
insert s1[4] s2[2]
|
||||
insert s1[6] s2[5]
|
||||
"""
|
||||
if processor is not None:
|
||||
s1 = processor(s1)
|
||||
s2 = processor(s2)
|
||||
|
||||
s1, s2 = conv_sequences(s1, s2)
|
||||
prefix_len, suffix_len = common_affix(s1, s2)
|
||||
s1 = s1[prefix_len : len(s1) - suffix_len]
|
||||
s2 = s2[prefix_len : len(s2) - suffix_len]
|
||||
sim, matrix = _matrix(s1, s2)
|
||||
|
||||
editops = Editops([], 0, 0)
|
||||
editops._src_len = len(s1) + prefix_len + suffix_len
|
||||
editops._dest_len = len(s2) + prefix_len + suffix_len
|
||||
|
||||
dist = len(s1) + len(s2) - 2 * sim
|
||||
if dist == 0:
|
||||
return editops
|
||||
|
||||
editop_list = [None] * dist
|
||||
col = len(s1)
|
||||
row = len(s2)
|
||||
while row != 0 and col != 0:
|
||||
# deletion
|
||||
if matrix[row - 1] & (1 << (col - 1)):
|
||||
dist -= 1
|
||||
col -= 1
|
||||
editop_list[dist] = Editop("delete", col + prefix_len, row + prefix_len)
|
||||
else:
|
||||
row -= 1
|
||||
|
||||
# insertion
|
||||
if row and not (matrix[row - 1] & (1 << (col - 1))):
|
||||
dist -= 1
|
||||
editop_list[dist] = Editop("insert", col + prefix_len, row + prefix_len)
|
||||
# match
|
||||
else:
|
||||
col -= 1
|
||||
|
||||
while col != 0:
|
||||
dist -= 1
|
||||
col -= 1
|
||||
editop_list[dist] = Editop("delete", col + prefix_len, row + prefix_len)
|
||||
|
||||
while row != 0:
|
||||
dist -= 1
|
||||
row -= 1
|
||||
editop_list[dist] = Editop("insert", col + prefix_len, row + prefix_len)
|
||||
|
||||
editops._editops = editop_list
|
||||
return editops
|
||||
|
||||
|
||||
def opcodes(
|
||||
s1,
|
||||
s2,
|
||||
*,
|
||||
processor=None,
|
||||
):
|
||||
"""
|
||||
Return Opcodes describing how to turn s1 into s2.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s1 : Sequence[Hashable]
|
||||
First string to compare.
|
||||
s2 : Sequence[Hashable]
|
||||
Second string to compare.
|
||||
processor: callable, optional
|
||||
Optional callable that is used to preprocess the strings before
|
||||
comparing them. Default is None, which deactivates this behaviour.
|
||||
|
||||
Returns
|
||||
-------
|
||||
opcodes : Opcodes
|
||||
edit operations required to turn s1 into s2
|
||||
|
||||
Notes
|
||||
-----
|
||||
The alignment is calculated using an algorithm of Heikki Hyyrö, which is
|
||||
described in [7]_. It has a time complexity and memory usage of ``O([N/64] * M)``.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [7] Hyyrö, Heikki. "A Note on Bit-Parallel Alignment Computation."
|
||||
Stringology (2004).
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from rapidfuzz.distance import LCSseq
|
||||
|
||||
>>> a = "qabxcd"
|
||||
>>> b = "abycdf"
|
||||
>>> for tag, i1, i2, j1, j2 in LCSseq.opcodes(a, b):
|
||||
... print(("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
|
||||
... (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2])))
|
||||
delete a[0:1] (q) b[0:0] ()
|
||||
equal a[1:3] (ab) b[0:2] (ab)
|
||||
delete a[3:4] (x) b[2:2] ()
|
||||
insert a[4:4] () b[2:3] (y)
|
||||
equal a[4:6] (cd) b[3:5] (cd)
|
||||
insert a[6:6] () b[5:6] (f)
|
||||
"""
|
||||
return editops(s1, s2, processor=processor).as_opcodes()
|
||||
Reference in New Issue
Block a user