Initial commit
This commit is contained in:
@@ -0,0 +1,182 @@
|
||||
# SPDX-License-Identifier: MIT
|
||||
# Copyright (C) 2022 Max Bachmann
|
||||
from __future__ import annotations
|
||||
|
||||
from rapidfuzz._common_py import conv_sequences
|
||||
from rapidfuzz._utils import is_none, setupPandas
|
||||
|
||||
|
||||
def distance(
|
||||
s1,
|
||||
s2,
|
||||
*,
|
||||
processor=None,
|
||||
score_cutoff=None,
|
||||
):
|
||||
"""
|
||||
Calculates the postfix distance between two strings.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s1 : Sequence[Hashable]
|
||||
First string to compare.
|
||||
s2 : Sequence[Hashable]
|
||||
Second string to compare.
|
||||
processor: callable, optional
|
||||
Optional callable that is used to preprocess the strings before
|
||||
comparing them. Default is None, which deactivates this behaviour.
|
||||
score_cutoff : int or None, optional
|
||||
Maximum distance between s1 and s2, that is
|
||||
considered as a result. If the distance is bigger than score_cutoff,
|
||||
score_cutoff + 1 is returned instead. Default is None, which deactivates
|
||||
this behaviour.
|
||||
|
||||
Returns
|
||||
-------
|
||||
distance : int
|
||||
distance between s1 and s2
|
||||
"""
|
||||
if processor is not None:
|
||||
s1 = processor(s1)
|
||||
s2 = processor(s2)
|
||||
|
||||
s1, s2 = conv_sequences(s1, s2)
|
||||
maximum = max(len(s1), len(s2))
|
||||
sim = similarity(s1, s2)
|
||||
dist = maximum - sim
|
||||
|
||||
return dist if (score_cutoff is None or dist <= score_cutoff) else score_cutoff + 1
|
||||
|
||||
|
||||
def similarity(
|
||||
s1,
|
||||
s2,
|
||||
*,
|
||||
processor=None,
|
||||
score_cutoff=None,
|
||||
):
|
||||
"""
|
||||
Calculates the postfix similarity between two strings.
|
||||
|
||||
This is calculated as ``len1 - distance``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s1 : Sequence[Hashable]
|
||||
First string to compare.
|
||||
s2 : Sequence[Hashable]
|
||||
Second string to compare.
|
||||
processor: callable, optional
|
||||
Optional callable that is used to preprocess the strings before
|
||||
comparing them. Default is None, which deactivates this behaviour.
|
||||
score_cutoff : int, optional
|
||||
Maximum distance between s1 and s2, that is
|
||||
considered as a result. If the similarity is smaller than score_cutoff,
|
||||
0 is returned instead. Default is None, which deactivates
|
||||
this behaviour.
|
||||
|
||||
Returns
|
||||
-------
|
||||
distance : int
|
||||
distance between s1 and s2
|
||||
"""
|
||||
if processor is not None:
|
||||
s1 = processor(s1)
|
||||
s2 = processor(s2)
|
||||
|
||||
s1, s2 = conv_sequences(s1, s2)
|
||||
sim = 0
|
||||
for ch1, ch2 in zip(reversed(s1), reversed(s2)):
|
||||
if ch1 != ch2:
|
||||
break
|
||||
sim += 1
|
||||
|
||||
return sim if (score_cutoff is None or sim >= score_cutoff) else 0
|
||||
|
||||
|
||||
def normalized_distance(
|
||||
s1,
|
||||
s2,
|
||||
*,
|
||||
processor=None,
|
||||
score_cutoff=None,
|
||||
):
|
||||
"""
|
||||
Calculates a normalized postfix similarity in the range [1, 0].
|
||||
|
||||
This is calculated as ``distance / (len1 + len2)``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s1 : Sequence[Hashable]
|
||||
First string to compare.
|
||||
s2 : Sequence[Hashable]
|
||||
Second string to compare.
|
||||
processor: callable, optional
|
||||
Optional callable that is used to preprocess the strings before
|
||||
comparing them. Default is None, which deactivates this behaviour.
|
||||
score_cutoff : float, optional
|
||||
Optional argument for a score threshold as a float between 0 and 1.0.
|
||||
For norm_dist > score_cutoff 1.0 is returned instead. Default is 1.0,
|
||||
which deactivates this behaviour.
|
||||
|
||||
Returns
|
||||
-------
|
||||
norm_dist : float
|
||||
normalized distance between s1 and s2 as a float between 0 and 1.0
|
||||
"""
|
||||
setupPandas()
|
||||
if is_none(s1) or is_none(s2):
|
||||
return 1.0
|
||||
|
||||
norm_sim = normalized_similarity(s1, s2, processor=processor)
|
||||
norm_dist = 1.0 - norm_sim
|
||||
|
||||
return norm_dist if (score_cutoff is None or norm_dist <= score_cutoff) else 1.0
|
||||
|
||||
|
||||
def normalized_similarity(
|
||||
s1,
|
||||
s2,
|
||||
*,
|
||||
processor=None,
|
||||
score_cutoff=None,
|
||||
):
|
||||
"""
|
||||
Calculates a normalized postfix similarity in the range [0, 1].
|
||||
|
||||
This is calculated as ``1 - normalized_distance``
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s1 : Sequence[Hashable]
|
||||
First string to compare.
|
||||
s2 : Sequence[Hashable]
|
||||
Second string to compare.
|
||||
processor: callable, optional
|
||||
Optional callable that is used to preprocess the strings before
|
||||
comparing them. Default is None, which deactivates this behaviour.
|
||||
score_cutoff : float, optional
|
||||
Optional argument for a score threshold as a float between 0 and 1.0.
|
||||
For norm_sim < score_cutoff 0 is returned instead. Default is 0,
|
||||
which deactivates this behaviour.
|
||||
|
||||
Returns
|
||||
-------
|
||||
norm_sim : float
|
||||
normalized similarity between s1 and s2 as a float between 0 and 1.0
|
||||
"""
|
||||
setupPandas()
|
||||
if is_none(s1) or is_none(s2):
|
||||
return 0.0
|
||||
|
||||
if processor is not None:
|
||||
s1 = processor(s1)
|
||||
s2 = processor(s2)
|
||||
|
||||
s1, s2 = conv_sequences(s1, s2)
|
||||
maximum = max(len(s1), len(s2))
|
||||
sim = similarity(s1, s2)
|
||||
norm_sim = sim / maximum if maximum else 1.0
|
||||
|
||||
return norm_sim if (score_cutoff is None or norm_sim >= score_cutoff) else 0.0
|
||||
Reference in New Issue
Block a user