Initial commit

This commit is contained in:
kdusek
2025-12-09 12:13:01 +01:00
commit 8e654ed209
13332 changed files with 2695056 additions and 0 deletions

View File

@@ -0,0 +1,269 @@
Metadata-Version: 2.4
Name: RapidFuzz
Version: 3.14.3
Summary: rapid fuzzy string matching
Author-Email: Max Bachmann <pypi@maxbachmann.de>
License-Expression: MIT
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: 3.13
Classifier: Programming Language :: Python :: 3.14
Project-URL: Homepage, https://github.com/rapidfuzz/RapidFuzz
Project-URL: Documentation, https://rapidfuzz.github.io/RapidFuzz/
Project-URL: Repository, https://github.com/rapidfuzz/RapidFuzz.git
Project-URL: Issues, https://github.com/rapidfuzz/RapidFuzz/issues
Project-URL: Changelog, https://github.com/rapidfuzz/RapidFuzz/blob/main/CHANGELOG.rst
Requires-Python: >=3.10
Provides-Extra: all
Requires-Dist: numpy; extra == "all"
Description-Content-Type: text/markdown
<h1 align="center">
<img src="https://raw.githubusercontent.com/rapidfuzz/RapidFuzz/main/docs/img/RapidFuzz.svg?sanitize=true" alt="RapidFuzz" width="400">
</h1>
<h4 align="center">Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance</h4>
<p align="center">
<a href="https://github.com/rapidfuzz/RapidFuzz/actions">
<img src="https://github.com/rapidfuzz/RapidFuzz/workflows/Test%20Build/badge.svg"
alt="Continuous Integration">
</a>
<a href="https://pypi.org/project/rapidfuzz/">
<img src="https://img.shields.io/pypi/v/rapidfuzz"
alt="PyPI package version">
</a>
<a href="https://anaconda.org/conda-forge/rapidfuzz">
<img src="https://img.shields.io/conda/vn/conda-forge/rapidfuzz.svg"
alt="Conda Version">
</a>
<a href="https://www.python.org">
<img src="https://img.shields.io/pypi/pyversions/rapidfuzz"
alt="Python versions">
</a><br/>
<a href="https://rapidfuzz.github.io/RapidFuzz">
<img src="https://img.shields.io/badge/-documentation-blue"
alt="Documentation">
</a>
<a href="https://codecov.io/gh/rapidfuzz/RapidFuzz">
<img src="https://codecov.io/gh/rapidfuzz/RapidFuzz/branch/main/graph/badge.svg?token=1IJLT65K8B"
alt="Code Coverage">
</a>
<a href="https://github.com/rapidfuzz/RapidFuzz/blob/main/LICENSE">
<img src="https://img.shields.io/github/license/rapidfuzz/rapidfuzz"
alt="GitHub license">
</a>
</p>
<p align="center">
<a href="#description">Description</a> •
<a href="#installation">Installation</a> •
<a href="#usage">Usage</a> •
<a href="#license">License</a>
</p>
---
## Description
RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from [FuzzyWuzzy](https://github.com/seatgeek/fuzzywuzzy). However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:
1) It is MIT licensed so it can be used with whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
2) It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
3) It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the [documentation](https://rapidfuzz.github.io/RapidFuzz)
4) Fixes multiple bugs in the `partial_ratio` implementation
5) It can be largely used as a drop in replacement for `fuzzywuzzy`. However there are a couple API differences described [here](https://github.com/rapidfuzz/RapidFuzz/blob/main/api_differences.md)
## Requirements
- Python 3.10 or later
- On Windows the [Visual C++ 2019 redistributable](https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads) is required
## Installation
There are several ways to install RapidFuzz, the recommended methods
are to either use `pip`(the Python package manager) or
`conda` (an open-source, cross-platform, package manager)
### with pip
RapidFuzz can be installed with `pip` the following way:
```bash
pip install rapidfuzz
```
There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on [piwheels](https://www.piwheels.org/project/rapidfuzz/).
> :heavy_multiplication_x: &nbsp;&nbsp;**failure "ImportError: DLL load failed"**
>
> If you run into this error on Windows the reason is most likely, that the [Visual C++ 2019 redistributable](https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads) is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).
### with conda
RapidFuzz can be installed with `conda`:
```bash
conda install -c conda-forge rapidfuzz
```
### from git
RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.
```bash
git clone --recursive https://github.com/rapidfuzz/rapidfuzz.git
cd rapidfuzz
pip install .
```
## Usage
Some simple functions are shown below. A complete documentation of all functions can be found [here](https://rapidfuzz.github.io/RapidFuzz/Usage/index.html).<br>
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found [here](#weighted-ratio).
### Scorers
Scorers in RapidFuzz can be found in the modules `fuzz` and `distance`.
#### Simple Ratio
```console
> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103
```
#### Partial Ratio
```console
> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0
```
#### Token Sort Ratio
```console
> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0
```
#### Token Set Ratio
```console
> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0
# Returns 100.0 if one string is a subset of the other, regardless of extra content in the longer string
> fuzz.token_set_ratio("fuzzy was a bear but not a dog", "fuzzy was a bear")
100.0
# Score is reduced only when there is explicit disagreement in the two strings
> fuzz.token_set_ratio("fuzzy was a bear but not a dog", "fuzzy was a bear but not a cat")
92.3076923076923
```
#### Weighted Ratio
```console
> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5
> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0
> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0
```
#### Quick Ratio
```console
> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0
> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5
> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0
```
### Process
The process module makes it compare strings to lists of strings. This is generally more
performant than using the scorers directly from Python.
Here are some examples on the usage of processors in RapidFuzz:
```console
> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)
> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)
```
The full documentation of processors can be found [here](https://rapidfuzz.github.io/RapidFuzz/Usage/process.html)
## Benchmark
The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy.
More detailed benchmarks for the string metrics can be found in the [documentation](https://rapidfuzz.github.io/RapidFuzz). For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:
```python
words = [
"".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
for _ in range(10_000)
]
samples = words[:: len(words) // 100]
```
The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly
from Python in the following way:
```python3
for sample in samples:
for word in words:
scorer(sample, word)
```
The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz
<img src="https://raw.githubusercontent.com/rapidfuzz/RapidFuzz/main/docs/img/scorer.svg?sanitize=true" alt="Benchmark Scorer">
The second benchmark compares the performance when the scorers are used in combination with cdist in the following
way:
```python3
cdist(samples, words, scorer=scorer)
```
The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like `cdist` is a lot faster than directly using it. That's why they should be used whenever possible.
<img src="https://raw.githubusercontent.com/rapidfuzz/RapidFuzz/main/docs/img/cdist.svg?sanitize=true" alt="Benchmark cdist">
## Support the project
If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.
Support the project through [GitHub Sponsors]() or via [PayPal](https://www.paypal.com/donate/?hosted_button_id=VGWQBBD5CTWJU):
[![](https://www.paypalobjects.com/en_US/i/btn/btn_donateCC_LG.gif)](https://www.paypal.com/donate/?hosted_button_id=VGWQBBD5CTWJU).
## License
RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well.
This old version of fuzzywuzzy can be found [here](https://github.com/seatgeek/fuzzywuzzy/tree/4bf28161f7005f3aa9d4d931455ac55126918df7).

View File

@@ -0,0 +1,105 @@
rapidfuzz-3.14.3.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
rapidfuzz-3.14.3.dist-info/METADATA,sha256=mY3AjiRAI2eI2UIrbl9ybDgIOa6cDm2JltE3bNxSjiw,12293
rapidfuzz-3.14.3.dist-info/RECORD,,
rapidfuzz-3.14.3.dist-info/WHEEL,sha256=LIrydfVXIQZCYHHYt4EvMdM8Vj8KvI9goZ8ya8gIfwM,157
rapidfuzz-3.14.3.dist-info/entry_points.txt,sha256=hmZhqJhZxrzKpas6tb_kAKUEE9952r4gqkJOV6urvt0,71
rapidfuzz-3.14.3.dist-info/licenses/LICENSE,sha256=80zN_9_1b8QXeFkV7t8YYB1UeXVd88RyssdUwpgC1oM,1092
rapidfuzz/__init__.py,sha256=aFfN7ZjQVH1k8oRH9Qy3qHVxUkFbtiXIaguVuctFRnI,836
rapidfuzz/__init__.pyi,sha256=6NNoCowtWGbHBRHZ-KPumXXSpk2x4trPmStDWqk9Oug,201
rapidfuzz/__pycache__/__init__.cpython-310.pyc,,
rapidfuzz/__pycache__/_common_py.cpython-310.pyc,,
rapidfuzz/__pycache__/_feature_detector.cpython-310.pyc,,
rapidfuzz/__pycache__/_utils.cpython-310.pyc,,
rapidfuzz/__pycache__/fuzz.cpython-310.pyc,,
rapidfuzz/__pycache__/fuzz_py.cpython-310.pyc,,
rapidfuzz/__pycache__/process.cpython-310.pyc,,
rapidfuzz/__pycache__/process_cpp.cpython-310.pyc,,
rapidfuzz/__pycache__/process_py.cpython-310.pyc,,
rapidfuzz/__pycache__/utils.cpython-310.pyc,,
rapidfuzz/__pycache__/utils_py.cpython-310.pyc,,
rapidfuzz/__pyinstaller/__init__.py,sha256=eNjMZIHLEdeArOmqjRgXrhkxskvxgAQJoWcqg-ceqPs,132
rapidfuzz/__pyinstaller/__pycache__/__init__.cpython-310.pyc,,
rapidfuzz/__pyinstaller/__pycache__/test_rapidfuzz_packaging.cpython-310.pyc,,
rapidfuzz/__pyinstaller/test_rapidfuzz_packaging.py,sha256=iBssItCNdVZpr7JWDJt5z7dIUsydlruuPs2qeLpFg5k,1114
rapidfuzz/_common_py.py,sha256=xbcjDP1g8-Xk8IkHwIp_Cd4ep_K3HSwFcbhzSKb5jiE,1773
rapidfuzz/_feature_detector.py,sha256=vTnfTB-Jfljbrupxsvsa5AQcZAkGHg7FXBg0pI3_YVg,332
rapidfuzz/_feature_detector_cpp.cpython-310-x86_64-linux-gnu.so,sha256=WA1k67XEePf7vi7DzP2TBorXRWwlww3jF1Tpm05Mp5s,41240
rapidfuzz/_utils.py,sha256=SuK1Mrl3MFhCORFJvpcrTqzUqkiLtNiVT42J_m5SwGk,2307
rapidfuzz/distance/DamerauLevenshtein.py,sha256=LicvoaIad4CawQuKnG7UJPgNV7yL20lNXfj1CkLtmkg,4055
rapidfuzz/distance/DamerauLevenshtein.pyi,sha256=bMR0Hm2512jXdcBXxTfPQOZwnJonCIY8X2RJfkXsEzg,1904
rapidfuzz/distance/DamerauLevenshtein_py.py,sha256=-zdMM4vv70Dk5VHAhbjeB5TpOd6-Y0bFS0uYbSBB9Fk,6591
rapidfuzz/distance/Hamming.py,sha256=_dj9-1ubfqtKCA2h7JtzZa9NfhIKfbfStNerCuwvSGA,4392
rapidfuzz/distance/Hamming.pyi,sha256=TjoXt9lysM9-ZOedijCii50xGGdjGlz239LWx0wbYeY,2769
rapidfuzz/distance/Hamming_py.py,sha256=FAeokMCOcW3Ub8XlO6tsHWWpdJWSUKVbJCNZCnP-pmI,9081
rapidfuzz/distance/Indel.py,sha256=C-ZCyD3dOamKIvt1ltNDroKPSqbMh4zC4FaudhdvHko,4296
rapidfuzz/distance/Indel.pyi,sha256=xjs1sdft7AcbHOh9rp9pH0FamAf_TrN2qyWBdMXk-NE,2593
rapidfuzz/distance/Indel_py.py,sha256=oE-hmb92o-a5xYU3bj6UQtvUljJ4Cf6VYjXAIwStzWA,9935
rapidfuzz/distance/Jaro.py,sha256=kjB_r6CBVJfUjRiCiRkDrtdloVQ9ak2hUQB44nIlvN0,3575
rapidfuzz/distance/Jaro.pyi,sha256=IpjLgvh73jalJiMMNqwc6TSmk7U9yE_JXLP3Q5605GM,1908
rapidfuzz/distance/JaroWinkler.py,sha256=3RRZ4BNt9Rs4KALgQNYsp8HCBZ4BdMxMOcirnMGwxvo,3831
rapidfuzz/distance/JaroWinkler.pyi,sha256=5XC-Y5fYFnmINM0Dw29BgRUvzFfnG07HVruCrwL4MF8,2164
rapidfuzz/distance/JaroWinkler_py.py,sha256=CJA9ImEQPGqRToXgjejdUES93L5JRZf9gGkbVuX6AbU,6481
rapidfuzz/distance/Jaro_py.py,sha256=1mexVsftTGRzhjctfUHuaG3D8M8T9oADuO9CqKoileU,7345
rapidfuzz/distance/LCSseq.py,sha256=tg62FG8PzPxYGdhx428xUfcd8cgEalB_hmqxc5K-Zcw,4392
rapidfuzz/distance/LCSseq.pyi,sha256=xjs1sdft7AcbHOh9rp9pH0FamAf_TrN2qyWBdMXk-NE,2593
rapidfuzz/distance/LCSseq_py.py,sha256=mH3JXKvXllXX3Ts6daGfdDKGWo5V1xHkI9RyWGVVw5E,11504
rapidfuzz/distance/Levenshtein.py,sha256=UJGLcs9dXL25kOjbi6TOCUHXf6uGMlGTWSotxRXf3JU,4584
rapidfuzz/distance/Levenshtein.pyi,sha256=7C-nWn_yEORoj-Ioow0BsmaLnpKH7ej_5smykFtwcnM,3678
rapidfuzz/distance/Levenshtein_py.py,sha256=f4gag2BCACSGXPVe0gnGnYf5CDLAdyqhvf5cUl9ptRU,17103
rapidfuzz/distance/OSA.py,sha256=DzkSlRrEThCf8zc9OCI5tgNqGAzusWcn5cYE2RAVK64,3543
rapidfuzz/distance/OSA.pyi,sha256=bMR0Hm2512jXdcBXxTfPQOZwnJonCIY8X2RJfkXsEzg,1904
rapidfuzz/distance/OSA_py.py,sha256=BGD49wAjNbA5xqhrUID4vkA7yaeJ3jXljsE60SWbEig,6251
rapidfuzz/distance/Postfix.py,sha256=QoTlbLgjj61CDM_rycFDoap3gARRWXOu6vwIw41Y0QE,3671
rapidfuzz/distance/Postfix.pyi,sha256=bMR0Hm2512jXdcBXxTfPQOZwnJonCIY8X2RJfkXsEzg,1904
rapidfuzz/distance/Postfix_py.py,sha256=ywWO0M5swCWkjZqjp2wKMEZ7_GV8Z91IRMe8_zZGeaQ,5039
rapidfuzz/distance/Prefix.py,sha256=2Iu577WnaYCHCQd8it76gDk60QxRdlFo0cQBItCZzWw,3639
rapidfuzz/distance/Prefix.pyi,sha256=bMR0Hm2512jXdcBXxTfPQOZwnJonCIY8X2RJfkXsEzg,1904
rapidfuzz/distance/Prefix_py.py,sha256=mHtW3wRD0jol76NnDOgIALMvslINtGJJ9ipZ713sldQ,5015
rapidfuzz/distance/__init__.py,sha256=gphKWTUI2CW-4OY_A9AOgz0db_sb4kxSqRr20PxsX2w,621
rapidfuzz/distance/__init__.pyi,sha256=wX594ohPZ4gASmvKpbovDWH2BB9IcVojRqtF0yPjzvg,571
rapidfuzz/distance/__pycache__/DamerauLevenshtein.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/DamerauLevenshtein_py.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/Hamming.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/Hamming_py.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/Indel.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/Indel_py.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/Jaro.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/JaroWinkler.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/JaroWinkler_py.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/Jaro_py.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/LCSseq.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/LCSseq_py.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/Levenshtein.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/Levenshtein_py.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/OSA.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/OSA_py.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/Postfix.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/Postfix_py.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/Prefix.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/Prefix_py.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/__init__.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/_initialize.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/_initialize_py.cpython-310.pyc,,
rapidfuzz/distance/__pycache__/metrics_py.cpython-310.pyc,,
rapidfuzz/distance/_initialize.py,sha256=UKwKITEVDTvj7MiWNsmPJBDN7xgowVwlzKllEjDzpoA,3074
rapidfuzz/distance/_initialize.pyi,sha256=N7ooznQtrQhZKNZ1UGtjUyf6LiP_vbtSCWFa49K9fJA,3998
rapidfuzz/distance/_initialize_cpp.cpython-310-x86_64-linux-gnu.so,sha256=NhGyLqH1fhLtOMDXzDZuRpbkOclQSaGPJRogFF3QqnU,310456
rapidfuzz/distance/_initialize_py.py,sha256=I_z-54avD84EE1HA7KjT8and4GHOQI-o2tK9ZG6eYsI,26320
rapidfuzz/distance/metrics_cpp.cpython-310-x86_64-linux-gnu.so,sha256=ANmrIG8ZlXWT-gkMxqTDb1tgdPPs_94fkGiuATjjSEc,2984328
rapidfuzz/distance/metrics_cpp_avx2.cpython-310-x86_64-linux-gnu.so,sha256=r7g7zq3yiDZl3DYg5gHbFA-BUtD9BzZA1Ynf5Az9DPE,3053928
rapidfuzz/distance/metrics_py.py,sha256=GEfDOAgkX-vKrdNA0mx47_ji286YPYvh6zkXa2by0vw,9037
rapidfuzz/fuzz.py,sha256=gkOM8b_kJ5yaq1er_sAqXJP6wbZJon9msV2L6EwGS24,4625
rapidfuzz/fuzz.pyi,sha256=8I3AJtX50VlobaAgFtqiXg1-pbzaRA9dFSKezv7zgUU,4811
rapidfuzz/fuzz_cpp.cpython-310-x86_64-linux-gnu.so,sha256=LEB5D_Fix5IoseFz4SjHYg_NfL-bxsfIKqN5uzxuOVo,2204840
rapidfuzz/fuzz_cpp_avx2.cpython-310-x86_64-linux-gnu.so,sha256=PqblWC6Y6FRkchc_G74O4-dydlMQiS0xMvM0Ar_3Ndw,2221224
rapidfuzz/fuzz_py.py,sha256=pa2UsGF7CW-fOyIcGgv_lPtLB6eVbuUqGlIA4ux2YKw,25826
rapidfuzz/process.py,sha256=JylT-tYBhwP566p0zO-O2ZT0p-0kW3cCUgbnCCOoVcQ,2672
rapidfuzz/process.pyi,sha256=B8qM_VOu8RCvdZAA7tNhBn9W7oB2KJfT_U5qeB9BQzQ,17246
rapidfuzz/process_cpp.py,sha256=uAXbHd_UVG0yOaFvVbZKgZzQLpDWteIJxCsY6MeURKU,2530
rapidfuzz/process_cpp_impl.cpython-310-x86_64-linux-gnu.so,sha256=xv-g4vB9gBTvAdbYHEsj8XELt5f5fo6fP9eoVt88I78,675688
rapidfuzz/process_py.py,sha256=di2AS2En6VzIrpog2H-vsvauaYnMZxB4aWB59mKY7ns,26646
rapidfuzz/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
rapidfuzz/utils.py,sha256=7rs2NCCSL2_mandvxSEkcly5WWb0RR4gxKOdYZJiavE,1910
rapidfuzz/utils.pyi,sha256=rz2lxhxQu-Bm6gPxBDjwBbNs2oBBjArP6PEYlWcaE5Q,304
rapidfuzz/utils_cpp.cpython-310-x86_64-linux-gnu.so,sha256=DuovbwqPCTSn_wrqfVzTCU7HPdoAFGLrFMxAujbtkl0,217688
rapidfuzz/utils_py.py,sha256=oP6xgOsopkR0NhNjf3u6x55gw03LUMJ1zh2FYIsxno4,622

View File

@@ -0,0 +1,6 @@
Wheel-Version: 1.0
Generator: scikit-build-core 0.11.6
Root-Is-Purelib: false
Tag: cp310-cp310-manylinux_2_27_x86_64
Tag: cp310-cp310-manylinux_2_28_x86_64

View File

@@ -0,0 +1,3 @@
[pyinstaller40]
tests = rapidfuzz.__pyinstaller:get_PyInstaller_tests

View File

@@ -0,0 +1,21 @@
Copyright © 2020-present Max Bachmann
Copyright © 2011 Adam Cohen
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.