Files
2025-12-09 12:13:01 +01:00

278 lines
11 KiB
Plaintext

Metadata-Version: 2.3
Name: edgartools
Version: 4.25.0
Summary: Navigate Edgar filings with ease
Project-URL: Documentation, https://dgunning.github.io/edgartools/
Project-URL: Issues, https://github.com/dgunning/edgartools/issues
Project-URL: Source, https://github.com/dgunning/edgartools
Author-email: Dwight Gunning <dgunning@gmail.com>
License: MIT
Keywords: company,edgar,filings,finance,financial,python,reports,sec
Classifier: Development Status :: 4 - Beta
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: 3.13
Classifier: Programming Language :: Python :: 3.14
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Requires-Python: >=3.10
Requires-Dist: beautifulsoup4>=4.10.0
Requires-Dist: hishel==0.1.3
Requires-Dist: httpx>=0.25.0
Requires-Dist: httpxthrottlecache>=0.1.6
Requires-Dist: humanize>=4.0.0
Requires-Dist: jinja2>=3.1.0
Requires-Dist: lxml>=4.4
Requires-Dist: nest-asyncio>=1.5.1
Requires-Dist: orjson>=3.6.0
Requires-Dist: pandas>=2.0.0
Requires-Dist: pyarrow>=17.0.0
Requires-Dist: pydantic>=2.0.0
Requires-Dist: rank-bm25>=0.2.1
Requires-Dist: rapidfuzz>=3.5.0
Requires-Dist: rich>=13.8.0
Requires-Dist: stamina>=24.2.0
Requires-Dist: tabulate>=0.9.0
Requires-Dist: textdistance>=4.5.0
Requires-Dist: tqdm>=4.62.0
Requires-Dist: unidecode>=1.2.0
Provides-Extra: ai
Requires-Dist: mcp==1.12.3; (python_version >= '3.10') and extra == 'ai'
Requires-Dist: tiktoken>=0.10.0; extra == 'ai'
Provides-Extra: ai-dev
Requires-Dist: pytest-mock>=3.12.0; extra == 'ai-dev'
Requires-Dist: responses>=0.24.0; extra == 'ai-dev'
Provides-Extra: data
Requires-Dist: duckdb>=1.0.0; extra == 'data'
Description-Content-Type: text/markdown
<p align="center">
<a href="https://github.com/dgunning/edgartools">
<img src="docs/images/edgartools-logo.png" alt="EdgarTools Python SEC EDGAR library logo" height="80">
</a>
</p>
<h3 align="center">Python Library for SEC EDGAR Data Extraction and Analysis</h3>
<p align="center">
<a href="https://pypi.org/project/edgartools"><img src="https://img.shields.io/pypi/v/edgartools.svg" alt="PyPI - Version"></a>
<a href="https://github.com/dgunning/edgartools/actions"><img src="https://img.shields.io/github/actions/workflow/status/dgunning/edgartools/python-hatch-workflow.yml" alt="GitHub Workflow Status"></a>
<a href="https://www.codefactor.io/repository/github/dgunning/edgartools"><img src="https://www.codefactor.io/repository/github/dgunning/edgartools/badge" alt="CodeFactor"></a>
<a href="https://github.com/pypa/hatch"><img src="https://img.shields.io/badge/%F0%9F%A5%9A-Hatch-4051b5.svg" alt="Hatch project"></a>
<a href="https://github.com/dgunning/edgartools/blob/main/LICENSE"><img src="https://img.shields.io/github/license/dgunning/edgartools" alt="GitHub"></a>
<a href="https://pypi.org/project/edgartools"><img src="https://img.shields.io/pypi/dm/edgartools" alt="PyPI - Downloads"></a>
</p>
<p align="center">
<b>Extract financial data from SEC EDGAR filings in 3 lines of Python code instead of 100+. Access company financials, insider trades, fund holdings, and XBRL data with an intuitive API designed for financial analysis.</b>
</p>
![EdgarTools SEC filing data extraction demo](docs/images/edgartools-demo.gif)
## SEC Filing Data Extraction with Python
| With EdgarTools | Without EdgarTools |
|-----------------------------------------------|---------------------------------------------|
| ✅ Instant access to any filing since 1994 | ❌ Hours spent navigating SEC.gov |
| ✅ Clean Python API with intuitive methods | ❌ Complex web scraping code |
| ✅ Automatic parsing into pandas DataFrames | ❌ Manual extraction of financial data |
| ✅ Specialized data objects for each form type | ❌ Custom code for each filing type |
| ✅ One-line conversion to clean, readable text | ❌ Messy HTML parsing for text extraction |
| ✅ LLM-ready text extraction for AI pipelines | ❌ Extra processing for AI/LLM compatibility |
| ✅ Automatic throttling to avoid blocks | ❌ Rate limiting headaches |
## Apple's income statement in 1 line of code
```python
balance_sheet = Company("AAPL").get_financials().balance_sheet()
```
## 🚀 Quick Start (2-minute tutorial)
```python
# 1. Import the library
from edgar import *
# 2. Tell the SEC who you are (required by SEC regulations)
set_identity("your.name@example.com") # Replace with your email
# 3. Find a company
company = Company("MSFT") # Microsoft
# 4. Get company filings
filings = company.get_filings()
# 5. Filter by form
insider_filings = filings.filter(form="4") # Insider transactions
# 6. Get the latest filing
insider_filing = insider_filings[0]
# 7. Convert to a data object
ownership = insider_filing.obj()
```
![Apple SEC Form 4 insider transaction data extraction with Python](docs/images/aapl-insider.png)
## SEC Filing Analysis: Real-World Solutions
### Company Financial Analysis
**Problem:** Need to analyze a company's financial health across multiple periods.
![Microsoft SEC 10-K financial data analysis with EdgarTools](docs/images/MSFT_financial_complex.png)
[See full code](docs/examples.md#company_financial_analysis)
## 📚 Documentation
- [User Journeys / Examples](https://edgartools.readthedocs.io/en/latest/examples/)
- [Quick Guide](https://edgartools.readthedocs.io/en/latest/quick-guide/)
- [Full API Documentation](https://edgartools.readthedocs.io/)
- [EdgarTools Blog](https://www.edgartools.io)
## 👥 Community & Support
- [GitHub Issues](https://github.com/dgunning/edgartools/issues) - Bug reports and feature requests
- [Discussions](https://github.com/dgunning/edgartools/discussions) - Questions and community discussions
## 🔮 Roadmap
- **Coming Soon**: Enhanced visualization tools for financial data
- **In Development**: Machine learning integrations for financial sentiment analysis
- **Planned**: Interactive dashboard for filing exploration
## 🤝 Contributing
We welcome contributions from the community! Here's how you can help:
- **Code**: Fix bugs, add features, improve documentation
- **Examples**: Share interesting use cases and examples
- **Feedback**: Report issues or suggest improvements
- **Spread the Word**: Star the repo, share with colleagues
See our [Contributing Guide](CONTRIBUTING.md) for details.
## ❤️ Sponsors & Support
If you find EdgarTools valuable, please consider supporting its development:
<a href="https://www.buymeacoffee.com/edgartools" target="_blank">
<img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 40px !important;width: 144px !important;" >
</a>
Your support helps maintain and improve EdgarTools for the entire community!
## Key Features for SEC Data Extraction and Analysis
- **Comprehensive Filing Access**: Retrieve **any** SEC filing (10-K, 10-Q, 8-K, 13F, S-1, Form 4, etc.) since 1994.
- **Financial Statement Extraction**: Easily access **Balance Sheets, Income Statements, Cash Flows**, and individual line items using XBRL tags or common names.
- **SEC EDGAR API**: Programmatic access to the complete SEC database.
- **Smart Data Objects**: Automatic parsing of filings into structured Python objects.
- **Fund Holdings Analysis**: Extract and analyze **13F holdings** data for investment managers.
- **Insider Transaction Monitoring**: Get structured data from **Form 3, 4, 5** filings.
- **Clean Text Extraction**: One-line conversion from filing HTML to clean, readable text suitable for NLP.
- **Targeted Section Extraction**: Pull specific sections like **Risk Factors (Item 1A)** or **MD&A (Item 7)**.
- **AI/LLM Ready**: Text formatting and chunking optimized for AI pipelines.
- **Performance Optimized**: Leverages libraries like `lxml` and potentially `PyArrow` for efficient data handling.
- **XBRL Support**: Extract and analyze XBRL-tagged data.
- **Intuitive API**: Simple, consistent interface for all data types.
## 🤖 AI-Native Integration
EdgarTools is designed from the ground up to work seamlessly with AI agents and LLM applications:
### Interactive Documentation
Every major object includes rich, searchable documentation accessible via the `.docs` property:
```python
from edgar import Company
company = Company("AAPL")
# Beautiful rich display with full API documentation
company.docs
# Search documentation with BM25 ranking
company.docs.search("get financials")
# AI-optimized text output for LLM context
context = company.text(detail='standard', max_tokens=500)
```
**3,450+ lines of API documentation** covering Company, Filing, XBRL, and Statement objects - always at your fingertips!
### AI Skills System
Extensible skill packages for specialized SEC analysis:
```python
from edgar.ai import list_skills, export_skill
# List available skills
skills = list_skills()
# Export to Claude Desktop format
export_skill("sec-analysis", format="claude-desktop")
```
Skills include:
- **Tutorial documentation** (skill.md, workflows.md, objects.md)
- **API reference** (complete method documentation)
- **Helper functions** (pre-built analysis workflows)
### Model Context Protocol (MCP) Server
Run EdgarTools as an MCP server for Claude Desktop and other MCP clients:
```bash
pip install edgartools[ai]
python -m edgar.ai
```
Configure in Claude Desktop (`~/Library/Application Support/Claude/claude_desktop_config.json`):
```json
{
"mcpServers": {
"edgartools": {
"command": "python",
"args": ["-m", "edgar.ai"],
"env": {
"EDGAR_IDENTITY": "Your Name your.email@example.com"
}
}
}
}
```
Then ask Claude:
- *"Research Apple Inc with financials"*
- *"Analyze Tesla's revenue trends over the last 4 quarters"*
- *"Compare Microsoft and Google's cash positions"*
### Why AI-Native Matters
- **Zero Friction**: `.docs` property provides instant learning without leaving your REPL
- **Token Efficient**: `.text()` methods use research-backed markdown-kv format
- **Progressive Disclosure**: Three detail levels (minimal/standard/detailed) for different contexts
- **Searchable**: BM25 semantic search finds relevant information instantly
- **Extensible**: BaseSkill class enables third-party skill packages
See [AI Integration Guide](docs/ai-integration.md) for complete documentation *(coming soon)*.
---
EdgarTools is distributed under the [MIT License](LICENSE).
## 📊 Star History
[![Star History Chart](https://api.star-history.com/svg?repos=dgunning/edgartools&type=Timeline)](https://star-history.com/#dgunning/edgartools&Timeline)