feat: Add comprehensive trading days validation and record count analysis
- Add trading days validation to check expected vs actual data points per year - Implement calculate_expected_trading_days() accounting for weekends and Czech holidays - Add validate_trading_days_count() with discrepancy analysis and severity classification - Integrate trading days validation into main validation workflow - Add record count analysis by time periods (week, month, quarter, half year, year) - Implement get_record_counts_by_period() with detailed breakdowns - Add --record-counts CLI command for standalone period analysis - Enhance format_validation_text() to display trading days and record count information - Update data quality scoring to include trading days compliance - Add comprehensive JSON output support for all new validation features Trading Days Validation: - Calculates expected trading days excluding weekends and Czech holidays - Compares actual data points against expected counts - Provides discrepancy analysis with severity levels (ok, minor, moderate, severe) - Shows data completeness percentage Record Count Analysis: - Breaks down data by multiple time periods simultaneously - Supports week-by-week, monthly, quarterly, half-yearly, and yearly counts - Handles leap years and varying month lengths correctly - Provides both summary and detailed views Integration Features: - Seamlessly integrated with existing price change and gap validation - Enhanced data quality scoring considers all validation aspects - Comprehensive JSON schema for programmatic consumption - Backward compatible with existing validation commands Usage Examples: python src/cli.py --validate --currency USD --year 2025 # Shows all validations python src/cli.py --record-counts --currency USD --year 2025 # Period breakdown only python src/cli.py --validate --currency EUR --json # Full validation in JSON Quality Assurance: - ✅ Pyright type checking: 0 errors, 0 warnings - ✅ Syntax validation: No compilation errors - ✅ Functional testing: All features working correctly - ✅ Czech holiday integration: Proper weekend/holiday exclusion - ✅ Leap year handling: Correctly accounts for 366-day years
This commit is contained in:
66
src/cli.py
66
src/cli.py
@@ -202,6 +202,11 @@ def main():
|
||||
action="store_true",
|
||||
help="Validuje data pro měnu nebo všechny měny. Zkontroluje konzistenci kurzů a detekuje možné chyby.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--record-counts",
|
||||
action="store_true",
|
||||
help="Zobrazí počet záznamů podle časových období (týden, měsíc, čtvrtletí, pololetí, rok).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--change-threshold",
|
||||
type=float,
|
||||
@@ -289,6 +294,67 @@ def main():
|
||||
else:
|
||||
text_output = data_validator.format_validation_text(results)
|
||||
print(text_output)
|
||||
elif args.record_counts:
|
||||
# Record counts command
|
||||
if not args.currency:
|
||||
print(
|
||||
"Chyba: Pro --record-counts je nutné zadat měnu pomocí -c/--currency."
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
debug_print(f"Získávám počty záznamů pro měnu {args.currency}...")
|
||||
record_counts = data_validator.get_record_counts_by_period(
|
||||
args.currency, args.year
|
||||
)
|
||||
|
||||
if args.json:
|
||||
output_json({"currency": args.currency, "record_counts": record_counts})
|
||||
else:
|
||||
print(f"Record Counts for {args.currency}:")
|
||||
print("=" * 50)
|
||||
|
||||
for year_key, periods in record_counts.items():
|
||||
print(f"\nYear {year_key}:")
|
||||
print(f" Total records: {periods.get('year', 0)}")
|
||||
|
||||
# Half years
|
||||
half_years = periods.get("half_year", {})
|
||||
if half_years:
|
||||
print(
|
||||
f" Half years: H1={half_years.get('H1', 0)}, H2={half_years.get('H2', 0)}"
|
||||
)
|
||||
|
||||
# Quarters
|
||||
quarters = periods.get("quarter", {})
|
||||
if quarters:
|
||||
quarter_str = ", ".join(
|
||||
[f"Q{q}={quarters.get(f'Q{q}', 0)}" for q in range(1, 5)]
|
||||
)
|
||||
print(f" Quarters: {quarter_str}")
|
||||
|
||||
# Months
|
||||
months = periods.get("month", {})
|
||||
if months:
|
||||
month_list = []
|
||||
for month in range(1, 13):
|
||||
month_key = f"{month:02d}"
|
||||
count = months.get(month_key, 0)
|
||||
month_list.append(f"{month}={count}")
|
||||
print(f" Months: {', '.join(month_list)}")
|
||||
|
||||
# Weeks summary
|
||||
weeks = periods.get("week", {})
|
||||
if weeks:
|
||||
total_weeks = len(weeks)
|
||||
if total_weeks <= 10:
|
||||
week_list = sorted([f"{w}={weeks[w]}" for w in weeks.keys()])
|
||||
print(f" Weeks: {', '.join(week_list)}")
|
||||
else:
|
||||
sample_weeks = sorted(list(weeks.keys())[:5])
|
||||
week_sample = [f"{w}={weeks[w]}" for w in sample_weeks]
|
||||
print(
|
||||
f" Weeks: {', '.join(week_sample)}... ({total_weeks} total weeks)"
|
||||
)
|
||||
elif args.year:
|
||||
# Validation command
|
||||
base_threshold = args.change_threshold
|
||||
|
||||
@@ -133,6 +133,176 @@ def calculate_working_days_gap(start_date, end_date):
|
||||
return working_days
|
||||
|
||||
|
||||
def calculate_expected_trading_days(year):
|
||||
"""
|
||||
Calculate the expected number of trading days in a year (excluding weekends and holidays).
|
||||
|
||||
:param year: Year to calculate for
|
||||
:return: Dictionary with expected trading days and breakdown
|
||||
"""
|
||||
import calendar
|
||||
|
||||
total_days = 366 if calendar.isleap(year) else 365
|
||||
weekend_days = 0
|
||||
holiday_days = 0
|
||||
|
||||
# Count weekends and holidays
|
||||
for month in range(1, 13):
|
||||
for day in range(1, calendar.monthrange(year, month)[1] + 1):
|
||||
date_str = f"{day:02d}.{month:02d}.{year}"
|
||||
if holidays.is_weekend(date_str):
|
||||
weekend_days += 1
|
||||
elif holidays.is_holiday(date_str):
|
||||
holiday_days += 1
|
||||
|
||||
expected_trading_days = total_days - weekend_days - holiday_days
|
||||
|
||||
return {
|
||||
"total_days": total_days,
|
||||
"weekend_days": weekend_days,
|
||||
"holiday_days": holiday_days,
|
||||
"expected_trading_days": expected_trading_days,
|
||||
}
|
||||
|
||||
|
||||
def validate_trading_days_count(currency_code, year):
|
||||
"""
|
||||
Validate that a year has the appropriate number of trading day entries.
|
||||
|
||||
:param currency_code: Currency to validate
|
||||
:param year: Year to check
|
||||
:return: Validation result with actual vs expected counts
|
||||
"""
|
||||
# Get expected trading days
|
||||
expected = calculate_expected_trading_days(year)
|
||||
|
||||
# Count actual data points for the year
|
||||
actual_count = 0
|
||||
rates_data = []
|
||||
|
||||
start_date = datetime(year, 1, 1)
|
||||
end_date = datetime(year, 12, 31)
|
||||
|
||||
current_date = start_date
|
||||
while current_date <= end_date:
|
||||
date_str = current_date.strftime("%d.%m.%Y")
|
||||
rate = database.get_rate(date_str, currency_code)
|
||||
if rate is not None:
|
||||
actual_count += 1
|
||||
rates_data.append((current_date, rate, date_str))
|
||||
current_date += timedelta(days=1)
|
||||
|
||||
# Calculate discrepancy
|
||||
discrepancy_days = actual_count - expected["expected_trading_days"]
|
||||
discrepancy_percent = (
|
||||
(discrepancy_days / expected["expected_trading_days"]) * 100
|
||||
if expected["expected_trading_days"] > 0
|
||||
else 0
|
||||
)
|
||||
|
||||
# Determine severity
|
||||
severity = "ok"
|
||||
if abs(discrepancy_percent) > 15:
|
||||
severity = "severe"
|
||||
elif abs(discrepancy_percent) > 5:
|
||||
severity = "moderate"
|
||||
elif abs(discrepancy_percent) > 0:
|
||||
severity = "minor"
|
||||
|
||||
return {
|
||||
"expected_trading_days": expected["expected_trading_days"],
|
||||
"actual_data_points": actual_count,
|
||||
"discrepancy_days": discrepancy_days,
|
||||
"discrepancy_percent": round(discrepancy_percent, 2),
|
||||
"severity": severity,
|
||||
"total_days": expected["total_days"],
|
||||
"weekend_days_excluded": expected["weekend_days"],
|
||||
"holiday_days_excluded": expected["holiday_days"],
|
||||
"data_completeness_percent": round(
|
||||
(actual_count / expected["expected_trading_days"]) * 100, 1
|
||||
)
|
||||
if expected["expected_trading_days"] > 0
|
||||
else 0,
|
||||
}
|
||||
|
||||
|
||||
def get_record_counts_by_period(currency_code, year=None):
|
||||
"""
|
||||
Get record counts for different time periods.
|
||||
|
||||
:param currency_code: Currency to analyze
|
||||
:param year: Optional year filter
|
||||
:return: Dictionary with counts by period
|
||||
"""
|
||||
if year:
|
||||
years_to_check = [year]
|
||||
else:
|
||||
years_to_check = database.get_years_with_data()
|
||||
if not years_to_check:
|
||||
return {}
|
||||
|
||||
results = {}
|
||||
|
||||
for check_year in years_to_check:
|
||||
year_results = {}
|
||||
|
||||
# Get all data for the year
|
||||
data_points = []
|
||||
start_date = datetime(check_year, 1, 1)
|
||||
end_date = datetime(check_year, 12, 31)
|
||||
|
||||
current_date = start_date
|
||||
while current_date <= end_date:
|
||||
date_str = current_date.strftime("%d.%m.%Y")
|
||||
rate = database.get_rate(date_str, currency_code)
|
||||
if rate is not None:
|
||||
data_points.append((current_date, rate))
|
||||
current_date += timedelta(days=1)
|
||||
|
||||
# Count by different periods
|
||||
period_counts = {
|
||||
"year": len(data_points),
|
||||
"half_year": {},
|
||||
"quarter": {},
|
||||
"month": {},
|
||||
"week": {},
|
||||
}
|
||||
|
||||
# Half years
|
||||
period_counts["half_year"]["H1"] = len(
|
||||
[d for d in data_points if d[0].month <= 6]
|
||||
)
|
||||
period_counts["half_year"]["H2"] = len(
|
||||
[d for d in data_points if d[0].month > 6]
|
||||
)
|
||||
|
||||
# Quarters
|
||||
for quarter in range(1, 5):
|
||||
start_month = (quarter - 1) * 3 + 1
|
||||
end_month = quarter * 3
|
||||
period_counts["quarter"][f"Q{quarter}"] = len(
|
||||
[d for d in data_points if start_month <= d[0].month <= end_month]
|
||||
)
|
||||
|
||||
# Months
|
||||
for month in range(1, 13):
|
||||
period_counts["month"][f"{month:02d}"] = len(
|
||||
[d for d in data_points if d[0].month == month]
|
||||
)
|
||||
|
||||
# Weeks (approximate by week number)
|
||||
week_counts = {}
|
||||
for data_point in data_points:
|
||||
week_num = data_point[0].isocalendar()[1]
|
||||
week_key = f"W{week_num:02d}"
|
||||
week_counts[week_key] = week_counts.get(week_key, 0) + 1
|
||||
period_counts["week"] = week_counts
|
||||
|
||||
results[str(check_year)] = period_counts
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def detect_temporal_gaps(currency_code, year=None, max_gap_days=3):
|
||||
"""
|
||||
Detect temporal gaps in data sequence (missing working days).
|
||||
@@ -327,9 +497,19 @@ def validate_currency_data(
|
||||
# Temporal gaps
|
||||
gaps = detect_temporal_gaps(currency_code, year, max_gap_days)
|
||||
|
||||
# Trading days validation
|
||||
trading_days_validation = None
|
||||
if year:
|
||||
trading_days_validation = validate_trading_days_count(currency_code, year)
|
||||
|
||||
# Record counts by period
|
||||
record_counts = get_record_counts_by_period(currency_code, year)
|
||||
|
||||
results["adaptive_analysis"] = adaptive_info
|
||||
results["price_change_violations"] = violations
|
||||
results["temporal_gaps"] = gaps
|
||||
results["trading_days_validation"] = trading_days_validation
|
||||
results["record_counts_by_period"] = record_counts
|
||||
|
||||
# Summary statistics
|
||||
severity_counts = defaultdict(int)
|
||||
@@ -350,7 +530,7 @@ def validate_currency_data(
|
||||
"max_gap_days": max_gap_days,
|
||||
}
|
||||
|
||||
# Data quality score (simple heuristic)
|
||||
# Data quality score (enhanced heuristic)
|
||||
quality_penalty = 0
|
||||
if violations:
|
||||
quality_penalty += (
|
||||
@@ -360,6 +540,11 @@ def validate_currency_data(
|
||||
quality_penalty += (
|
||||
len(gaps) * 10 + gap_severity_counts.get("severe", 0) * 30
|
||||
)
|
||||
if trading_days_validation and trading_days_validation["severity"] != "ok":
|
||||
severity_penalty = {"minor": 5, "moderate": 15, "severe": 30}
|
||||
quality_penalty += severity_penalty.get(
|
||||
trading_days_validation["severity"], 0
|
||||
)
|
||||
|
||||
results["data_quality_score"] = max(0, 100 - quality_penalty)
|
||||
|
||||
@@ -495,6 +680,82 @@ def format_validation_text(results):
|
||||
else:
|
||||
output.append("\nTemporal Gaps: None found")
|
||||
|
||||
# Trading days validation
|
||||
trading_validation = results.get("trading_days_validation")
|
||||
if trading_validation:
|
||||
output.append("\nTrading Days Validation:")
|
||||
output.append(
|
||||
f"- Expected trading days: {trading_validation['expected_trading_days']} ({trading_validation.get('total_days', 'N/A')} total - {trading_validation.get('weekend_days_excluded', 0)} weekends - {trading_validation.get('holiday_days_excluded', 0)} holidays)"
|
||||
)
|
||||
output.append(
|
||||
f"- Actual data points: {trading_validation['actual_data_points']}"
|
||||
)
|
||||
output.append(
|
||||
f"- Discrepancy: {trading_validation['discrepancy_days']} days ({trading_validation['discrepancy_percent']}%)"
|
||||
)
|
||||
output.append(
|
||||
f"- Data completeness: {trading_validation['data_completeness_percent']}%"
|
||||
)
|
||||
output.append(f"- Status: {trading_validation['severity'].upper()}")
|
||||
|
||||
# Record counts by period
|
||||
record_counts = results.get("record_counts_by_period", {})
|
||||
if record_counts:
|
||||
for year_key, periods in record_counts.items():
|
||||
output.append(f"\nRecord Counts for {year_key}:")
|
||||
output.append(f"- Year total: {periods.get('year', 0)} records")
|
||||
|
||||
# Half years
|
||||
half_years = periods.get("half_year", {})
|
||||
if half_years:
|
||||
output.append(
|
||||
f"- Half years: H1={half_years.get('H1', 0)}, H2={half_years.get('H2', 0)}"
|
||||
)
|
||||
|
||||
# Quarters
|
||||
quarters = periods.get("quarter", {})
|
||||
if quarters:
|
||||
quarter_str = ", ".join(
|
||||
[f"Q{q}={quarters.get(f'Q{q}', 0)}" for q in range(1, 5)]
|
||||
)
|
||||
output.append(f"- Quarters: {quarter_str}")
|
||||
|
||||
# Months summary
|
||||
months = periods.get("month", {})
|
||||
if months:
|
||||
month_list = [
|
||||
f"{m}={months.get(f'{int(m):02d}', 0)}"
|
||||
for m in [
|
||||
"01",
|
||||
"02",
|
||||
"03",
|
||||
"04",
|
||||
"05",
|
||||
"06",
|
||||
"07",
|
||||
"08",
|
||||
"09",
|
||||
"10",
|
||||
"11",
|
||||
"12",
|
||||
]
|
||||
]
|
||||
output.append(f"- Months: {', '.join(month_list)}")
|
||||
|
||||
# Weeks summary (show first few and indicate total)
|
||||
weeks = periods.get("week", {})
|
||||
if weeks:
|
||||
total_weeks = len(weeks)
|
||||
if total_weeks <= 10:
|
||||
week_list = [f"{w}={weeks[w]}" for w in sorted(weeks.keys())]
|
||||
output.append(f"- Weeks: {', '.join(week_list)}")
|
||||
else:
|
||||
sample_weeks = sorted(list(weeks.keys())[:5])
|
||||
week_sample = [f"{w}={weeks[w]}" for w in sample_weeks]
|
||||
output.append(
|
||||
f"- Weeks: {', '.join(week_sample)}... ({total_weeks} total weeks)"
|
||||
)
|
||||
|
||||
summary = results.get("summary", {})
|
||||
quality_score = results.get("data_quality_score", 0)
|
||||
output.append(f"\nData Quality Score: {quality_score}%")
|
||||
|
||||
Reference in New Issue
Block a user